
JiniArchitectureOverview

JimWaldo
A Jini system is a Java-centric distributed system designed for simplicity,

flexibility, and federation. The Jini architecture provides mechanisms for machines

or programs to enter into a federation where each machine or program offers

resources to other members of the federation and uses resources as needed. The

design of the Jini architecture exploits the ability to move Java language code from

machine to machine and unifies under the notion of a service everything from the

user of a Jini system to the software available on the machines to the hardware

components of the machines themselves.



ldwide,
to use
right,
ive or

(6/87)

it only

al Java,
, SNM,
he Net-
Sun
istered
 1998 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 U.S.A.
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable, wor
limited license (without the right to sublicense) under SUN’s intellectual property rights that are essential
this Specification for internal evaluation purposes only. Other than this limited license, you acquire no
title, or interest in or to the Specification and you shall have no right to use the Specification for product
commercial use.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

This software and documentation is the proprietary information of Sun Microsystems, Inc. You shall use
in accordance with the terms of the license agreement you entered into with Sun.

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFT-
WARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS
A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, HotJava, HotJava Views, Visu
Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava, PersonalJava
SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, T
work Is The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going,
WorkShop, XView, Java WorkShop, the Java Coffee Cup logo, and Visual Java are trademarks or reg
trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.
MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.
JiniArchitecture Overview



Introduction 1
This document describes the high level architecture of a Jini software system,

defines the different components that make up the system, characterizes the

use of those components, and discusses some of the component interactions.

This document identifies those parts of the system that are necessary

infrastructure, those that are part of the programming model, and those that

are optional services which can live within the system. This document also

discusses the reasons behind particular design choices.

1.1 Goals of the System
A Jini system is a distributed system based on the idea of federating groups of

users and the resources required by those users. The overall goal is to turn the

network into a flexible, easily administered tool on which resources can be

found by human and computational clients. Resources can be implemented as

either hardware devices, software programs, or a combination of the two. The

focus of the system is to make the network a more dynamic entity that better

reflects the dynamic nature of the workgroup by enabling the ability to add

and delete services flexibly.

A Jini system consists of the following parts:

• a set of components that provide an infrastructure for federating services in

a distributed system

• a programming model that supports and encourages the production of

reliable distributed services
Page 3

The technology disclosed herein may be covered by patents or patents pending



1

• services that can be made part of a Jini federation and which offer

functionality to any other member of the federation

While these pieces are separable and distinct, they are interrelated, which can

blur the distinction in practice. The components that make up the Jini

infrastructure make use of the Jini programming model; services that reside

within the infrastructure also use that model; and the programming model is

well supported by components in the infrastructure.

The end goals of the system span a number of different audiences; these goals

include the following:

• enabling users to share services and resources over a network

• providing users easy access to resources anywhere on the network while

allowing the network location of the user to change

• providing programmers with tools and programming patterns which allow

the development of robust and secure distributed systems

• simplifying the task of building, maintaining, and altering a network of

devices, software, and users.

The Jini system extends the Java application environment from a single virtual

machine to a network of machines. The Java application environment provides

a good computing platform for distributed computing because both code and

data can move from machine to machine. The environment has built-in

security that allows the confidence to run code downloaded from another

machine. Strong typing in the Java application environment enables

identifying the class of an object to be run on a virtual machine even when the

object did not originate on that machine. The result is a system in which the

network supports a fluid configuration of objects which can move from place

to place as needed and can call any part of the network to perform operations.

The Jini architecture exploits these characteristics of the Java application

environment to simplify the construction of a distributed system. The Jini

architecture adds mechanisms that allow fluidity of all components in a

distributed system, extending the easy movement of objects to the entire

networked system.
Page 4 Jini Architecture Overview

The technology disclosed herein may be covered by patents or patents pending



1

The Jini infrastructure provides mechanisms for devices, services, and users to

join and detach from a network. Joining into and leaving a Jini grouping is an

easy and natural, often automatic, occurrence. Jini groups are far more

dynamic than is currently possible in networked groups where configuring a

network is a centralized function done by hand.

1.2 Environmental Assumptions
The Jini system federates computers and computing devices into what appears

to the user as a single system. It relies on the existence of a network of

reasonable speed connecting those computers and devices—10mbps in the

general case. Some devices require much higher bandwidth and others can do

with much less—displays and printers are examples of extreme points. We

assume the latency of the network is reasonable, measured, at most, in seconds

rather than minutes.

We assume that each Jini-connected device has some memory and processing

power. Devices without processing power or memory may be connected to a

Jini system, but those devices are controlled by another piece of hardware

and/or software, called a proxy, that presents the device to the Jini system and

which itself contains both processing power and memory. The architecture for

devices not equipped with a Java virtual machine is discussed more fully in a

separate document.

The Jini system is Java-technology centered. The Jini architecture gains much of

its simplicity from assuming that the Java programming language is the

implementation language for components. The ability to dynamically

download and run code is central to a number of the features of the Jini

architecture. However, the Java-centric nature of the Jini architecture depends

on the Java application environment rather than on the Java programming

language. Any programming language can be supported by a Jini system if it

has a compiler that produces compliant bytecodes for the Java programming

language.

1.3 Related Documents
This document does not provide a full specification of the Jini system. Each of

the Jini components is specified in a companion document. In particular, the

reader is directed to the following documents (note: Please check

http://www.java.sun.com/Products/Jini for availability):
Page 5

The technology disclosed herein may be covered by patents or patents pending



1

• The Java Remote Method Invocation Specification

• The Java Object Serialization Specification

• The Jini Discovery and Join Specification

• The Distributed Event Specification

• The Distributed Leasing Specification

• The Transaction Specification

• The JavaSpaces™ Specification

• The Jini Lookup Service Specification

• The Jini Device Architecture Specification
Page 6 Jini Architecture Overview

The technology disclosed herein may be covered by patents or patents pending



SystemOverview 2
2.1 Key Concepts
The purpose of the Jini architecture is to federate groups of devices and

software components into a single, dynamic distributed system. The resulting

federation provides the simplicity of access, ease of administration, and

support for sharing that are provided by a large monolithic system while

retaining the flexibility, uniform response, and control provided by a personal

computer or workstation.

The architecture of a single Jini system is targeted to the workgroup, which can

range in size from two or three users in small offices or homes to groups of up

to 1,000. Members of the federation are assumed to agree on basic notions of

trust, administration, identification, and policy. It is possible to federate Jini

systems themselves for larger organizations.

2.1.1 Services

The most important concept within the Jini architecture is that of a service. A

service is an entity that can be used by a person, a program, or another service.

A service may be a computation, storage, a communication channel to another

user, a software filter, a hardware device, or another user. A service may be
Page 7

The technology disclosed herein may be covered by patents or patents pending



2

more specific than this, for example providing a translation from one word-

processor format to some other or translating a document from one language

to some other.

Members of a Jini system federate in order to share access to services. A Jini

federation should not be thought of as sets of clients and servers, or users and

programs, or even programs and files. Instead, a Jini federation consists of

services that can be composed together for the performance of a particular

task. Services may make use of other services, and a client of one service may

itself be a service with clients of its own. The dynamic nature of a Jini system

allows services to be added or withdrawn from a federation at any time

according to demand, need, or the changing requirements of the workgroup

using it.

Jini systems provide mechanisms for service construction, lookup,

communication, and use in a distributed system. Examples of services include

devices such as printers, displays, or disks; software such as applications or

utilities; information such as databases and files; and users of the system.

Services in a Jini system communicate with each other by using a service
protocol, which is a set of Java interfaces. The set of such protocols is open

ended. The base Jini system defines a small number of such protocols which

define critical service interactions. For some of these protocols we will provide

example implementations of services that use them.

2.1.2 Lookup Service

Services are found and resolved by a lookup service. The lookup service is the

central bootstrapping mechanism for the system and provides the major point

of contact between the system and users of the system. In precise terms, a

lookup service maps interfaces indicating the functionality provided by a

service to sets of objects that implement the service. In addition, descriptive

entries associated with a service allow more fine-grained selection of services

based on properties understandable to people.

Objects in a lookup service may include other lookup services; this provides

hierarchical lookup. Further, a lookup service may contain objects that

encapsulate other naming or directory services, providing a way for bridges to

be built between a Jini lookup service and other forms of lookup service. Of
Page 8 Jini Architecture Overview

The technology disclosed herein may be covered by patents or patents pending



2

course, references to a Jini lookup service may be placed in these other naming

and directory services, providing a means for clients of those services to gain

access to a Jini federation.

A service is added to a lookup service by a process called discovery, indicating

that the presence of the service is discovered by the Jini system.

2.1.3 Java Remote Method Invocation (RMI)

Communication between services is accomplished using Java Remote Method
Invocation (RMI). The infrastructure to support communication between

services is not itself a service that is discovered and used but is, rather, a part

of the Jini infrastructure. RMI provides mechanisms to find, activate, and

garbage collect object groups. RMI also provides the infrastructure for

multicast, replication, and the mechanisms for basic security and

confidentiality.

Fundamentally, RMI is a Java-programming-language-enabled extension to

traditional remote procedure call mechanisms. RMI allows not only data to be

passed from object to object around the network but full objects, including

code. Much of the simplicity of the Jini system is enabled by this ability to

move code around the network in a form that is encapsulated as an object.

2.1.4 Security

The Jini security model is built on the twin notions of a principal and an access
control list. Jini services are accessed on behalf of some entity—the principal—

which generally traces back to a particular user of the system. Services

themselves may request access to other services based on the identity of the

object that implements the service. Whether access to a service is allowed

depends on the contents of an access control list that is associated with the

object.

2.1.5 Leasing

Access to many of the services in the Jini environment is lease based. A lease is

a grant of guaranteed access over a time period. Each lease is negotiated

between the user of the service and the provider of the service as part of the

service protocol: A service is requested for some period; access is granted for

some period, presumably taking the request period into account. If a lease is
Page 9

The technology disclosed herein may be covered by patents or patents pending



2

not renewed before it is freed—either because the resource is no longer needed,

the client or network fails, or the lease is not permitted to be renewed—then

both the user and the provider of the resource can conclude the resource can be

freed.

Leases are either exclusive or non-exclusive. Exclusive leases insure that no one

else may access the resource during the period of the lease; non-exclusive

leases allow multiple users to share a resource.

2.1.6 Transactions

A series of operations, either within a single service or spanning multiple

services, can be wrapped in a transaction. The Jini transaction interfaces supply

a service protocol needed to coordinate a two-phase commit. How transactions

are implemented—and indeed, the very semantics of the notion of a

transaction—is left up to the service using the interfaces.

2.1.7 Events

The Jini architecture supports distributed events. An object may allow other

objects to register interest in events in the object and receive a notification of

the occurrence of such an event. This enables distributed event-based

programs to be written with a variety of reliability and scalability guarantees.

2.2 Component Overview
The components of the Jini system can be segmented into three categories:

infrastructure, programming model, and services. The infrastructure is the set of

components that enable building a Jini federation, while the services are the

entities within the federation. The programming model is a set of interfaces

that enable the construction of reliable services, including those that are part of

the infrastructure and those that join into the federation.

These three categories, though distinct and separable, are entangled to such an

extent that the distinction between them can seem blurred. Moreover, it is

possible to build Jini-like systems with variants on the categories or without all

three of them. But a Jini system gains its full power because it is a system built

with the particular infrastructure and programming models described, based

on the notion of a service. Decoupling the segments within the architecture
Page 10 Jini Architecture Overview

The technology disclosed herein may be covered by patents or patents pending



2

allows legacy code to be changed minimally to take part in a Jini federation.

Nevertheless, the full power of a Jini system will be available only to new

services that are constructed using the integrated model.

A Jini system can be seen as a network extension of the infrastructure,

programming model, and services that made Java technology successful in the

single-machine case. These categories along with the corresponding

components in the familiar Java application environment are shown in

Figure 1.

Figure 1: Jini Architecture Segmentation

2.2.1 Infrastructure

The Jini infrastructure defines the minimal Jini core. The infrastructure

includes the following:

• an extended version of the Java Remote Method Invocation system

(RMI)—this is the basic mechanism of communication between components

in a Jini system

• a distributed security system, integrated into RMI, which extends the Java

platform’s security model to the world of distributed systems

• the discovery protocol, a service protocol that allows services (both

hardware and software) to discover, become part of, and advertise supplied

services to the other members of the federation

Infrastructure Programming Model Services

Java VM
RMI
Java Security Model

Java APIs
JavaBeans

JNDI
Enterprise Beans
JTS
...

...

Base
Java

Java
 +

Jini

Extended RMI
Discovery
Distributed Security
Lookup

Leasing
Two Phase Commit
Events

JavaSpace

Two Phase Commit Manager

...
Page 11

The technology disclosed herein may be covered by patents or patents pending



2

• the lookup service, which serves as a repository of services. Entries in the

lookup service are objects in the Java programming language; these objects

can be downloaded as part of a lookup operation and act as local proxies to

the service that placed the code into the lookup service

The discovery protocol defines the way a service of any kind becomes part of a

Jini federation; extended RMI defines the base language within which the Jini

components communicate; the distributed security model and its

implementation define how entities are identified and how they get the rights

to perform actions on their own behalf and on the behalf of others; and the

lookup service reflects the current members of the federation and acts as the

central marketplace for offering and finding services by members of the

federation.

2.2.2 Programming Model

The infrastructure both enables the programming model and makes use of it.

Entries in the lookup service are leased, allowing the lookup service to reflect

accurately the set of available services currently. When services join or leave a

lookup service, events are signaled, and objects that have registered interest in

such events get notifications when new services become available or old

services cease to be active. The programming model rests on the ability to

move code, which is supported by the base infrastructure.

Both the infrastructure and the services that use that infrastructure are

computational entities that exist in the physical environment of the Jini system.

However, services also constitute a set of interfaces which define

communication protocols that can be used by the services and the

infrastructure to communicate between themselves.

These interfaces, taken together, make up the distributed extension of the

standard Java programming language model that constitute the Jini

programming model. Among the interfaces that make up the Jini programming

model are the following:

• the leasing interface, which defines a way of allocating and freeing resources

using a renewable, duration-based model

• the event and notification interface, which is an extension of the

JavaBeans™ event model to the distributed environment that enables event-

based communication between Jini services
Page 12 Jini Architecture Overview

The technology disclosed herein may be covered by patents or patents pending



2

• the two-phase commit (or transaction) interfaces, which enable entities to

cooperate in such a way that either all of the changes made to the group

occur atomically or none of them occur

The lease interface extends the Java programming language model by adding

time to the notion of holding a reference to a resource, enabling references to

be reclaimed safely in the face of network failures.

The event and notification interfaces extend the JavaBeans™ and standard Java

event model to the distributed case, enabling events to be handled by third

party objects while making various delivery and timeliness guarantees. The

model also recognizes that the delivery of a distributed notification may be

delayed.

The two-phase commit interfaces introduce a light-weight, object-oriented

protocol enabling Jini objects to coordinate state changes. The protocol differs

from most transaction interfaces in that it does not assume that the transactions

occur in a transaction processing system. Such systems define mechanisms and

programming requirements that guarantee the correct implementation of a

particular transaction semantics. The Jini two-phase commit protocol takes a

more traditional object-oriented view, leaving the correct implementation of

the desired transaction semantics up to the implementor of the particular

objects that are involved in the transaction. The goal of the two-phase commit

protocol is to define the interactions that such objects must have to coordinate

such groups of operations.

The interfaces that define the Jini programming model are used by the

infrastructure components where appropriate and by the initial Jini services.

For example, the lookup service makes use of the leasing and event interfaces:

Leasing insures that services registered continue to be available, and events

help administrators discover problems and devices needing configuration.

JavaSpaces utilize leasing and events, and also support the two phase commit

protocol. The two-phase commit manager can be used to coordinate the voting

phase of a transaction for those objects that support the two-phase commit

protocol.

It is not required that the implementation of a service use the Jini

programming model, but such services need to use that model for their

interaction with the Jini infrastructure. For example, every service interacts

with the Jini lookup service by using the programming model; and whether a

service offers resources on a leased basis or not, the service’s registration with

the lookup service will be leased and will need to be periodically renewed.
Page 13

The technology disclosed herein may be covered by patents or patents pending



2

The binding of the programming model to the services and the infrastructure is

what makes a Jini federation a system as opposed to a collection of services

and protocols. The combination of infrastructure, service, and programming

model, all designed to work together and constructed using each other,

simplifies the overall system and unifies it in a way that makes it easier to

understand.

2.2.3 Services

The Jini infrastructure and programming model are built to enable services to

be offered and found in the network federation. These services make use of the

infrastructure to make calls to each other, to discover each other, and to

announce their presence to other services and users.

Services appear programmatically as objects written in the Java programming

language, perhaps made up of other objects. A service has an interface which

defines the operations that can be requested of that service. Some of these

interfaces are intended to be used by programs, while others are intended to be

run by the receiver so that the service can interact with a user. The type of the

service determines the interfaces that make up that service and also define the

set of methods that can be used to access the service. A single service may be

implemented by using other services.

The initial Jini services include the following:

• JavaSpaces, which can be used for simple communication and for storage of

related groups of Java objects

• a two-phase commit manager, which enables groups of objects to participate

in the two phase commit protocol defined by the programming model

2.3 Service Architecture
Services form the interactive basis for a Jini system, both at the programming

and user interface levels. The details of the service architecture are best

understood once the discovery and lookup protocols are presented.
Page 14 Jini Architecture Overview

The technology disclosed herein may be covered by patents or patents pending



2

2.3.1 Discovery and Lookup Protocols

The heart of the Jini system is a pair protocols called discovery and lookup,

which occur at different times. Discovery occurs when a service joins a Jini

lookup service, for example, when a device is plugged in; lookup occurs when

a client or user needs to locate and invoke a service described by its attributes

and possibly, other attributes. The following diagram outlines the discovery

process.

Discovery is the process of adding a service to a Jini system. A service provider

is the originator of the service—a device or software, for example. First, the

service provider locates a lookup service by broadcasting a presence

announcement. Then, a proxy for the service is loaded into the lookup service.

This proxy contains the interface for the service along with any other

Service
ProviderClient

Lookup
Service

Proxy

Figure 2: Discovery

A service provider registers
with a lookup service, placing
proxy code in the service
Page 15

The technology disclosed herein may be covered by patents or patents pending



2

descriptive attributes. Services must be able to find a lookup service; however,

this requirement may be delegated to a third party. The service is now ready to

be looked up and used, as shown in the following diagram.

A client locates an appropriate service by its type—that is, by its Java

interface—along with descriptive attributes which are used in a user interface

for the lookup service.

The final stage is to invoke the service, as shown in the following diagram.

The proxy code is loaded into the client. The proxy code may implement a

private protocol between itself and the original service provider. Different

implementations of the same service interface can use completely different

interaction protocols.

Proxy

Service
ProviderClient

Lookup
Service

Figure 3: First Stage of Lookup

A client requests a service
by Java type and, perhaps,
other service attributes

Proxy

Service
ProviderClient

Lookup
Service

Proxy

Figure 4: Invoking a service

A copy of the proxy is moved to
the client and used by the client
to talk to the service
Page 16 Jini Architecture Overview

The technology disclosed herein may be covered by patents or patents pending



2

The ability to move code from the service provider to the lookup service and

from there to the client of the service gives the service provider great freedom

in the communication patterns between the service and its clients. This code

movement also ensures that the proxy held by the client and the service for

which it is a proxy are always synchronized, because the proxy is supplied by

the service itself. The client only knows that it is dealing with an

implementation of an interface written in the Java programming language, so

the code that implements the interface can do whatever is needed to provide

the service. Because this code came originally from the service itself, the code

can take advantage of implementation details of the service known only to the

code.

The client interacts with a service via a set of well-defined interfaces written in

the Java programming language. These interfaces define the set of methods

that can be used to interact with the service. At a rough level, these interfaces

can be broken down into two distinct types:

• programmatic interfaces, which allow other software to interact with the

service by making direct method calls on the service

• user interfaces, which present an interaction mechanism to end-users of the

system

Programmatic interfaces are identified by the type system of the Java

programming language, and services can be found in a lookup service by

asking for those that support a particular interface. Finding a service this way

ensures that the program looking for the service will know how to use that

service, because that use is defined by the set of methods that are defined by

the type.

Programmatic interfaces may be implemented either as RMI references to the

remote object that implements the service, as local objects that provide all of

the service locally, or as some combination. Such combinations, called smart
proxies, implement some of the functions of a service locally and the remainder

through remote calls to a centralized implementation of the service.

A user interface can also be stored in the lookup service. Such an interface will

be identified by the Java programming language type Applet which allows

the interface to be displayed by browsers or other user-interface tools. A user

interface stored in the lookup service by a Jini service is an implementation

that allows the service to be directly manipulated by a user of the system.
Page 17

The technology disclosed herein may be covered by patents or patents pending



2

In effect, a user interface for a service is a specialized form of the service proxy

that enables a program, such as a browser, to step out of the way and let the

human user interact directly with a service.

An alternative form of lookup is the peer lookup service. A peer lookup service

can be used when a client cannot find a lookup service. In such situations, the

client can send out the same identification packet used by a lookup service to

request service providers to register. Service providers will then attempt to

register with the client as though it were a lookup service. The client can select

those services it needs from the registration requests it receives in response and

drop or refuse the rest. Such an approach works best in small, isolated

networks.

2.3.2 Service Implementation

Objects that implement a service may be designed to run in a single address

space with other, helper objects, especially when there are certain location or

security-based requirements. Such objects make up an object group, An object

group is guaranteed to always reside in a single address space/virtual machine

when those objects are running. Objects that are not in the same object group

are isolated from each other, typically by running them in a different virtual

machine or address space.

A service may be implemented directly or indirectly by specialized hardware.

Such devices can be contacted by the code associated with the interface for the

service.

From the service client’s point of view, there is no distinction between services

that are implement by objects on a different machine, services that are

downloaded into the local address space, and services that are implemented in

hardware. All of these services will appear to be available on the network, will

appear to be objects written in the Java programming language, and one kind

of implementation can be replaced by another kind of implementation without

change or knowledge by the client.

2.4 For More Information
Further details on the Jini architecture are available in the detailed

specifications.
Page 18 Jini Architecture Overview

The technology disclosed herein may be covered by patents or patents pending


	Jini‘Architecture Overview
	Jim Waldo

	A Jini system is a Java‘-centric distributed system designed for simplicity, flexibility, and fed...
	Introduction
	1
	1.1 Goals of the System
	1.2 Environmental Assumptions
	1.3 Related Documents
	System Overview
	2

	2.1 Key Concepts
	2.1.1 Services
	2.1.2 Lookup Service
	2.1.3 Java Remote Method Invocation (RMI‘)
	2.1.4 Security
	2.1.5 Leasing
	2.1.6 Transactions
	2.1.7 Events

	2.2 Component Overview
	2.2.1 Infrastructure
	2.2.2 Programming Model
	2.2.3 Services

	2.3 Service Architecture
	2.3.1 Discovery and Lookup Protocols
	2.3.2 Service Implementation

	2.4 For More Information


