2.4 DataFragmentation

In this section it is presented the main fragmentation strategies. As mentioned
previously, there are two fundamental fragmentation strategies: horizontal and
vertical. Furthermore, there is a possibility of nesting fragments in a hybrid fashion.

2.4.1 Horizontal Fragmentation

Horizontal fragmentation partitions a relation along its tuples. Thus each fragment
has a subset of the tuples of the relation. There are two versions of horizontal
partitioning: primary and derived. Primary horizontal fragmentation of a relation is
performed using predicates that ate defined on that relation. Derived horizontal
fragmentation, on the other hand, is partitioning of a relation that results from
predicates being defined on another relation.

Figure 3.7 shows the expression of links among the database relations. Note that the
direction of the link shows a one-to-many relationship. For example, for each title
there are multiple employees with that title; thus there is a link between the PAY
and EMP relations. Along the same lines, the many-to-many relationship between
the EMP and PROJ relations is expressed with two links to the ASG relation. The
relation at the tail link is called the owner (source) of the link and the relation at the
head is called the member (target).

Example. Given link L; of Figure 3.7, the owner and member functions have the
following values:

owner (L1) = PAY
member (L1) = EMP

The fundamental qualitative information consists of the predicates used in user
queries. At this point we are interested in determining simple predicates. Given a
relation R(Aj, Az .., An), where 4; is an attribute defined over domain D;, a simple
predicate p; defined on R has the form

pj: Ai 8 Value

where 0 € {=, <, #, <, >, 2} and Value is chosen from the domain of 4; (Value € D;). We
use Pr; to denote the set of all simple predicates defined on a relation Ri. The
members of Pr; are denoted by pj.

Example. Given the relation instance PROJ of Figure 3.3
PNAME = “Maintenance”

Is a simple predicate, as well as
BUDGET < 200000

User queries quite often include more complicated predicates, which are Boolean
combinations of simple predicates. One combination that we are particularly
interested in, called a minterm predicate, is the conjunction of simple predicates.
Given a set Pr; = {pi1, piz, .-, pim} of simple predicates for relation R;, there are a set of
minterm predicates M; = {mji, mi, ..., miz}.

Example. Consider relation PAY of Figure 3.3. The following are some of the possible
simple predicates that can be defined on PAY.

p1: TITLE = “Elect. Eng.”
pz: TITLE = “Syst. Anal.”
p3: TITLE = “Mech. Eng.”
p4+: TITLE = “Programmer”
ps: SAL <30000

The following are some of the minterm predicates that can be defined base don
these simple predicates.

m;: TITLE = “Elect. Eng.” A SAL < 30000
mgz: TITLE = “Elect. Eng.” A SAL > 30000
m3z: 7(TITLE = “Elect. Eng.”) A SAL < 30000
my: ~(TITLE = “Elect. Eng.”) A SAL > 30000
ms: TITLE = “Programmer” A SAL < 30000
me: TITLE = “Programmer” A SAL > 30000

2.4.1.1 Primary Horizontal Fragmentation

A primary horizontal fragmentation is defined by a selection operation on the owner
relations of database schema. Therefore, given relation R, its horizontal fragments
are given by

Ri=or(R),1sisw

Where F; is the selection formula used to obtain fragment R; (also called
fragmentation predicate).

Example. Consider relation PROJ of Figure 3.3, we can define the following
horizontal fragments based on the project location. The resulting fragments are
shown in Figure 3.8.

PROJ1 = 0Loc = “Montreal” (PRO])
PRO]Z = OLOC = “New York” (PROD
PROJ3 = 0Loc = “Paris” (PROD

2.4.1.2 Derived Horizontal Fragmentation

A derived horizontal fragmentation is defined on a member relation of a link
according to a selection operation specified on its owner. It is important to remark
two points. First, the link between the owner and the member relations is defined
by means of semijoins. Accordingly, given a link L where owner (L) = S and member
(L) = R, the derived horizontal fragments of R are defined as:

Ri=RxS,1<i<w

Where w is the maximum number of fragments that will be define on R, and S; = o
(S), where F; is the formula according to which the primary horizontal fragment S; is
defined.

Example. Consider link L; in Figure 3.7 where owner (L;) = PAY and member (L;) =
EMP. Then we can group engineers into two groups according to their salary: those
making less than or equal to $30,000, and those making more than $30,000. The two
fragments EMP1 and EMP2 are defined as follows:

EMP1 = EMP x PAY1
EMP2 = EMP x PAY2

Where

PAY1 = osaL <30000(PAY)
PAYZ2 = 0OsaL>30000(PAY)

The result of this fragmentation is depicted in Figure 3.11. To carry out derived
horizontal fragmentation, three inputs are needed: the set of partitions of the owner
relation (e.g., PAY1 and PAY2), the member relation, and the set of semijoin
predicates between the owner and the member (e.g. EMP.TITLE = PAY.TITLE).

2.4.2 Vertical Fragmentation

Vertical fragmentation of a relation R produces fragments Ry, R;, ..., Rr, each of which
contains a subset of R’s attributes as well as the primary key of R. The objective of
vertical fragmentation is to partition a relation into a set of smaller relations so that
many of the user applications will run on only one fragment. In this context, an
“optimal” fragmentation is one that produces a fragmentation scheme, which
minimizes the execution time user applications that run on these fragments.

Vertical partitioning is inherently more complicated than horizontal partitioning.
This is due the total number of alternatives that are available. For example, in
horizontal partitioning, if the total of simple predicates in P, is n, there are 27
possible minterm predicates that can be defined on it. In addition, we know that
some of these will contradict the existing implications, further reducing the
candidate fragments that need to be considered. In case of vertical partitioning,

however, if a relation has m non-primary key attributes, the number of possible
fragments is equal to B(m), which is the mth Bell number. For large values of m,
B(m) = m™; for example, for m=10, B(m) = 115,000, for m = 15, B(m) = 109, for m=30,
B(m) = 1043,

These values indicate that it is futile to attempt to obtain optimal solutions to
the vertical partitioning problem; one has to resort to heuristics. Two types of
heuristic approaches exist for the vertical fragmentation of global relations:

a) Grouping: starts by assigning each attribute to one fragment, and at each
step, joins some of the fragments until some criteria is satisfied. Grouping
was first suggested for centralized databases and was used later for
distributed databases.

b) Splitting: starts with the relation and decides on beneficial partitionings
based on the access behavior of applications to the attributes. The technique
was also first discussed for centralized database design. It was then extended
to the distributed environment.

The splitting technique fits more naturally within the top-down design
methodology, since the “optimal” solution is probably closer to the full relation than
to a set of fragments each of which consist of a single attribute. Furthermore,
splitting generates non-overlapping fragments whereas grouping typically results in
overlapping fragments. We prefer non-overlapping fragments for disjointness which
refers to non-primary key attributes. In addition, the replication of the global
relation’s key into the fragments is a characteristic of vertical fragmentation that
allows the reconstruction of the global relation. Therefore, splitting is considered
only for those attributes that do not participate in the primary key.

2.4.3 Hybrid Fragmentation

In most cases a simple horizontal or vertical fragmentation of a database scheme
will not be sufficient to satisfy the requirements of user applications. In this case a
vertical fragmentation may be followed by a horizontal one, or vice versa, producing
a tree structured partitioning (Figure 3.19). Since two types of partitioning
strategies are applied one after the other, this alternative is called hybrid
fragmentation. It has also been named mixed fragmentation or nested fragmentation.

A good example for the necessity of hybrid fragmentation is relation PROJ. We can
partition PROJ into six horizontal fragments based on two applications, and
vertically into two. What we have, therefore, is a set of horizontal fragments, each of
which is further partitioned into two vertical fragments. The number of levels of
nesting can be larger, but it is certainly finite. In the case of horizontal
fragmentation, one has to stop when each fragment consist of only one tuple,
whereas the termination point for vertical fragmentation is one attribute per
fragment.

