6. Design Issues of Distributed DBMS
6.1 Distributed Database Design

One of the main questions that is being addressed is how database and the
applications that run against it should be placed across the sites. There are two basic
alternatives to placing data: partitioned (or no-replicated) and replicated. In the
partitioned scheme the database is divided into a number of disjoint partitions each
of which is placed at different site. Replicated designs can be either fully replicated
(also called fully duplicated) where entire database is stored at each site, or partially
replicated (or partially duplicated) where each partition of the database is stored at
more than one site, but not at all the sites. The two fundamental design issues are
fragmentation, the separation of the database into partitions called fragments, and
distribution, the optimum distribution of fragments.

The research in this area mostly involve mathematical programming in order to
minimize the combined cost of storing the database, processing transactions against
it, and message communication among site.

6.2 Distributed Directory Management

A directory contains information (such as descriptions and locations) about
data items in the database. Problems related to directory management are similar in
nature to the database placement problem discussed in the preceding section. A
directory may be global to the entire DDBS or local to each site; it can be centralized
at one site or distributed over several sites; there can be a single copy or multiple
copies.

6.3 Distributed Query Processing

Query processing deals with designing algorithms that analyze queries and
convert them into a series of data manipulation operations. The problem is how to
decide on a strategy for executing each query over the network in the most cost-
effective way, however cost is defined. The factors to be considered are the
distribution of data, communication cost, and lack of sufficient locally-available
information. The objective is to optimize where the inherent parallelism is used to
improve the performance of executing the transaction, subject to the above-
mentioned constraints.

6.4 Distributed Concurrency Control

Concurrency control involves the synchronization of access to the distributed
database, such that the integrity of the database is maintained. It is, without any
doubt, one of the most extensively studied problems in the DDBS field. The
concurrency control problem in a distributed context is somewhat different that in a
centralized framework. One not only has to worry about the integrity of a single
database, but also about the consistency of multiple copies of the database. The

condition that requires all values of multiple copies of every data item to converge
to the same value is called mutual consistency. Let us only mention that the two
general classes are pessimistic, synchronizing the execution of the user request
before the execution starts, and optimistic, executing requests and then checking if
the execution has compromised the consistency of the database. Two fundamental
primitives that can be used with both approaches are locking, which is based on the
mutual exclusion of access to data items, and timestamping, where transactions
executions are ordered based on timestamps. There are variations of these schemes
as well as hybrid algorithms that attempt to combine the two basic mechanisms.

6.5 Distributed Deadlock Management

The deadlock problem in DDBSs is similar in nature to that encountered in
operating systems. The competition among users for access to a set of resources
(data, in this case) can result in a deadlock if the synchronization mechanism is
based on locking. The well-known alternatives of prevention, avoidance, and
detection/recovery also apply to DDBSs.

6.6 Reliability of Distributed DBMS

It is important that mechanisms be provided to ensure the consistency of the
database as well as to detect failures and recover from them. The implication for
DDBSs is that when a failure occurs and various sites become either inoperable or
inaccessible, the databases at the operational sites remain consistent and up to date.
Furthermore, when the computer system or network recovers from the failure, the
DDBSs should be able to recover and bring the databases at the failed sites up-to-
date. This may be especially difficult in the case of network partitioning, where the
sites are divided into two or more groups with no communication among them.

6.7 Replication

If the distributed database is (partially or fully) replicated, it is necessary to
implement protocols that ensure the consistency of the replicas, i.e. copies of the
same data item have the same value. These protocols can be eager in that they force
the updates to be applied to all the replicas before the transactions completes, or
they may be lazy so that the transactions updates one copy (called the master) from
which updates are propagated to the others after the transaction completes.

